3.3.13 \(\int \frac {\sqrt {f x} (d+e x^2)}{\sqrt {a+b x^2+c x^4}} \, dx\) [213]

3.3.13.1 Optimal result
3.3.13.2 Mathematica [A] (verified)
3.3.13.3 Rubi [A] (verified)
3.3.13.4 Maple [F]
3.3.13.5 Fricas [F]
3.3.13.6 Sympy [F]
3.3.13.7 Maxima [F]
3.3.13.8 Giac [F]
3.3.13.9 Mupad [F(-1)]

3.3.13.1 Optimal result

Integrand size = 31, antiderivative size = 297 \[ \int \frac {\sqrt {f x} \left (d+e x^2\right )}{\sqrt {a+b x^2+c x^4}} \, dx=\frac {2 d (f x)^{3/2} \sqrt {1+\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}} \operatorname {AppellF1}\left (\frac {3}{4},\frac {1}{2},\frac {1}{2},\frac {7}{4},-\frac {2 c x^2}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}\right )}{3 f \sqrt {a+b x^2+c x^4}}+\frac {2 e (f x)^{7/2} \sqrt {1+\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}} \operatorname {AppellF1}\left (\frac {7}{4},\frac {1}{2},\frac {1}{2},\frac {11}{4},-\frac {2 c x^2}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}\right )}{7 f^3 \sqrt {a+b x^2+c x^4}} \]

output
2/3*d*(f*x)^(3/2)*AppellF1(3/4,1/2,1/2,7/4,-2*c*x^2/(b-(-4*a*c+b^2)^(1/2)) 
,-2*c*x^2/(b+(-4*a*c+b^2)^(1/2)))*(1+2*c*x^2/(b-(-4*a*c+b^2)^(1/2)))^(1/2) 
*(1+2*c*x^2/(b+(-4*a*c+b^2)^(1/2)))^(1/2)/f/(c*x^4+b*x^2+a)^(1/2)+2/7*e*(f 
*x)^(7/2)*AppellF1(7/4,1/2,1/2,11/4,-2*c*x^2/(b-(-4*a*c+b^2)^(1/2)),-2*c*x 
^2/(b+(-4*a*c+b^2)^(1/2)))*(1+2*c*x^2/(b-(-4*a*c+b^2)^(1/2)))^(1/2)*(1+2*c 
*x^2/(b+(-4*a*c+b^2)^(1/2)))^(1/2)/f^3/(c*x^4+b*x^2+a)^(1/2)
 
3.3.13.2 Mathematica [A] (verified)

Time = 11.23 (sec) , antiderivative size = 242, normalized size of antiderivative = 0.81 \[ \int \frac {\sqrt {f x} \left (d+e x^2\right )}{\sqrt {a+b x^2+c x^4}} \, dx=\frac {2 \sqrt {f x} \sqrt {\frac {b-\sqrt {b^2-4 a c}+2 c x^2}{b-\sqrt {b^2-4 a c}}} \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^2}{b+\sqrt {b^2-4 a c}}} \left (7 d x \operatorname {AppellF1}\left (\frac {3}{4},\frac {1}{2},\frac {1}{2},\frac {7}{4},-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}},\frac {2 c x^2}{-b+\sqrt {b^2-4 a c}}\right )+3 e x^3 \operatorname {AppellF1}\left (\frac {7}{4},\frac {1}{2},\frac {1}{2},\frac {11}{4},-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}},\frac {2 c x^2}{-b+\sqrt {b^2-4 a c}}\right )\right )}{21 \sqrt {a+b x^2+c x^4}} \]

input
Integrate[(Sqrt[f*x]*(d + e*x^2))/Sqrt[a + b*x^2 + c*x^4],x]
 
output
(2*Sqrt[f*x]*Sqrt[(b - Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b - Sqrt[b^2 - 4*a*c] 
)]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*(7*d*x* 
AppellF1[3/4, 1/2, 1/2, 7/4, (-2*c*x^2)/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^2) 
/(-b + Sqrt[b^2 - 4*a*c])] + 3*e*x^3*AppellF1[7/4, 1/2, 1/2, 11/4, (-2*c*x 
^2)/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^2)/(-b + Sqrt[b^2 - 4*a*c])]))/(21*Sqr 
t[a + b*x^2 + c*x^4])
 
3.3.13.3 Rubi [A] (verified)

Time = 0.48 (sec) , antiderivative size = 297, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {1674, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {f x} \left (d+e x^2\right )}{\sqrt {a+b x^2+c x^4}} \, dx\)

\(\Big \downarrow \) 1674

\(\displaystyle \int \left (\frac {d \sqrt {f x}}{\sqrt {a+b x^2+c x^4}}+\frac {e (f x)^{5/2}}{f^2 \sqrt {a+b x^2+c x^4}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {2 d (f x)^{3/2} \sqrt {\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}+1} \sqrt {\frac {2 c x^2}{\sqrt {b^2-4 a c}+b}+1} \operatorname {AppellF1}\left (\frac {3}{4},\frac {1}{2},\frac {1}{2},\frac {7}{4},-\frac {2 c x^2}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}\right )}{3 f \sqrt {a+b x^2+c x^4}}+\frac {2 e (f x)^{7/2} \sqrt {\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}+1} \sqrt {\frac {2 c x^2}{\sqrt {b^2-4 a c}+b}+1} \operatorname {AppellF1}\left (\frac {7}{4},\frac {1}{2},\frac {1}{2},\frac {11}{4},-\frac {2 c x^2}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}\right )}{7 f^3 \sqrt {a+b x^2+c x^4}}\)

input
Int[(Sqrt[f*x]*(d + e*x^2))/Sqrt[a + b*x^2 + c*x^4],x]
 
output
(2*d*(f*x)^(3/2)*Sqrt[1 + (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c 
*x^2)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[3/4, 1/2, 1/2, 7/4, (-2*c*x^2)/(b 
- Sqrt[b^2 - 4*a*c]), (-2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])])/(3*f*Sqrt[a + b 
*x^2 + c*x^4]) + (2*e*(f*x)^(7/2)*Sqrt[1 + (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c 
])]*Sqrt[1 + (2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[7/4, 1/2, 1/2, 11 
/4, (-2*c*x^2)/(b - Sqrt[b^2 - 4*a*c]), (-2*c*x^2)/(b + Sqrt[b^2 - 4*a*c]) 
])/(7*f^3*Sqrt[a + b*x^2 + c*x^4])
 

3.3.13.3.1 Defintions of rubi rules used

rule 1674
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + ( 
c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(f*x)^m*(d + e*x^2)^q* 
(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p, q}, x] && N 
eQ[b^2 - 4*a*c, 0] && (IGtQ[p, 0] || IGtQ[q, 0] || IntegersQ[m, q])
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
3.3.13.4 Maple [F]

\[\int \frac {\sqrt {f x}\, \left (e \,x^{2}+d \right )}{\sqrt {c \,x^{4}+b \,x^{2}+a}}d x\]

input
int((f*x)^(1/2)*(e*x^2+d)/(c*x^4+b*x^2+a)^(1/2),x)
 
output
int((f*x)^(1/2)*(e*x^2+d)/(c*x^4+b*x^2+a)^(1/2),x)
 
3.3.13.5 Fricas [F]

\[ \int \frac {\sqrt {f x} \left (d+e x^2\right )}{\sqrt {a+b x^2+c x^4}} \, dx=\int { \frac {{\left (e x^{2} + d\right )} \sqrt {f x}}{\sqrt {c x^{4} + b x^{2} + a}} \,d x } \]

input
integrate((f*x)^(1/2)*(e*x^2+d)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="fricas 
")
 
output
integral((e*x^2 + d)*sqrt(f*x)/sqrt(c*x^4 + b*x^2 + a), x)
 
3.3.13.6 Sympy [F]

\[ \int \frac {\sqrt {f x} \left (d+e x^2\right )}{\sqrt {a+b x^2+c x^4}} \, dx=\int \frac {\sqrt {f x} \left (d + e x^{2}\right )}{\sqrt {a + b x^{2} + c x^{4}}}\, dx \]

input
integrate((f*x)**(1/2)*(e*x**2+d)/(c*x**4+b*x**2+a)**(1/2),x)
 
output
Integral(sqrt(f*x)*(d + e*x**2)/sqrt(a + b*x**2 + c*x**4), x)
 
3.3.13.7 Maxima [F]

\[ \int \frac {\sqrt {f x} \left (d+e x^2\right )}{\sqrt {a+b x^2+c x^4}} \, dx=\int { \frac {{\left (e x^{2} + d\right )} \sqrt {f x}}{\sqrt {c x^{4} + b x^{2} + a}} \,d x } \]

input
integrate((f*x)^(1/2)*(e*x^2+d)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="maxima 
")
 
output
integrate((e*x^2 + d)*sqrt(f*x)/sqrt(c*x^4 + b*x^2 + a), x)
 
3.3.13.8 Giac [F]

\[ \int \frac {\sqrt {f x} \left (d+e x^2\right )}{\sqrt {a+b x^2+c x^4}} \, dx=\int { \frac {{\left (e x^{2} + d\right )} \sqrt {f x}}{\sqrt {c x^{4} + b x^{2} + a}} \,d x } \]

input
integrate((f*x)^(1/2)*(e*x^2+d)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="giac")
 
output
integrate((e*x^2 + d)*sqrt(f*x)/sqrt(c*x^4 + b*x^2 + a), x)
 
3.3.13.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {f x} \left (d+e x^2\right )}{\sqrt {a+b x^2+c x^4}} \, dx=\int \frac {\sqrt {f\,x}\,\left (e\,x^2+d\right )}{\sqrt {c\,x^4+b\,x^2+a}} \,d x \]

input
int(((f*x)^(1/2)*(d + e*x^2))/(a + b*x^2 + c*x^4)^(1/2),x)
 
output
int(((f*x)^(1/2)*(d + e*x^2))/(a + b*x^2 + c*x^4)^(1/2), x)